\(\int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{5/2}}{(a+a \sin (e+f x))^2} \, dx\) [117]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 38, antiderivative size = 154 \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{5/2}}{(a+a \sin (e+f x))^2} \, dx=\frac {32 (A-3 B) c^2 \sec (e+f x) \sqrt {c-c \sin (e+f x)}}{3 a^2 f}-\frac {8 (A-3 B) c \sec (e+f x) (c-c \sin (e+f x))^{3/2}}{3 a^2 f}-\frac {(A-3 B) \sec (e+f x) (c-c \sin (e+f x))^{5/2}}{3 a^2 f}-\frac {(A-B) \sec ^3(e+f x) (c-c \sin (e+f x))^{9/2}}{3 a^2 c^2 f} \]

[Out]

-8/3*(A-3*B)*c*sec(f*x+e)*(c-c*sin(f*x+e))^(3/2)/a^2/f-1/3*(A-3*B)*sec(f*x+e)*(c-c*sin(f*x+e))^(5/2)/a^2/f-1/3
*(A-B)*sec(f*x+e)^3*(c-c*sin(f*x+e))^(9/2)/a^2/c^2/f+32/3*(A-3*B)*c^2*sec(f*x+e)*(c-c*sin(f*x+e))^(1/2)/a^2/f

Rubi [A] (verified)

Time = 0.34 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {3046, 2934, 2753, 2752} \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{5/2}}{(a+a \sin (e+f x))^2} \, dx=-\frac {(A-B) \sec ^3(e+f x) (c-c \sin (e+f x))^{9/2}}{3 a^2 c^2 f}+\frac {32 c^2 (A-3 B) \sec (e+f x) \sqrt {c-c \sin (e+f x)}}{3 a^2 f}-\frac {(A-3 B) \sec (e+f x) (c-c \sin (e+f x))^{5/2}}{3 a^2 f}-\frac {8 c (A-3 B) \sec (e+f x) (c-c \sin (e+f x))^{3/2}}{3 a^2 f} \]

[In]

Int[((A + B*Sin[e + f*x])*(c - c*Sin[e + f*x])^(5/2))/(a + a*Sin[e + f*x])^2,x]

[Out]

(32*(A - 3*B)*c^2*Sec[e + f*x]*Sqrt[c - c*Sin[e + f*x]])/(3*a^2*f) - (8*(A - 3*B)*c*Sec[e + f*x]*(c - c*Sin[e
+ f*x])^(3/2))/(3*a^2*f) - ((A - 3*B)*Sec[e + f*x]*(c - c*Sin[e + f*x])^(5/2))/(3*a^2*f) - ((A - B)*Sec[e + f*
x]^3*(c - c*Sin[e + f*x])^(9/2))/(3*a^2*c^2*f)

Rule 2752

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(g*C
os[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m - 1)/(f*g*(m - 1))), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && Eq
Q[a^2 - b^2, 0] && EqQ[2*m + p - 1, 0] && NeQ[m, 1]

Rule 2753

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-b)*(
g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m - 1)/(f*g*(m + p))), x] + Dist[a*((2*m + p - 1)/(m + p)), Int
[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2,
0] && IGtQ[Simplify[(2*m + p - 1)/2], 0] && NeQ[m + p, 0]

Rule 2934

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
 + (f_.)*(x_)]), x_Symbol] :> Simp[(-(b*c + a*d))*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*(p +
 1))), x] + Dist[b*((a*d*m + b*c*(m + p + 1))/(a*g^2*(p + 1))), Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*
x])^(m - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, -1] && LtQ[p, -1]

Rule 3046

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a^m*c^m, Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m)*(A + B
*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && I
ntegerQ[m] &&  !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))

Rubi steps \begin{align*} \text {integral}& = \frac {\int \sec ^4(e+f x) (A+B \sin (e+f x)) (c-c \sin (e+f x))^{9/2} \, dx}{a^2 c^2} \\ & = -\frac {(A-B) \sec ^3(e+f x) (c-c \sin (e+f x))^{9/2}}{3 a^2 c^2 f}-\frac {(A-3 B) \int \sec ^2(e+f x) (c-c \sin (e+f x))^{7/2} \, dx}{2 a^2 c} \\ & = -\frac {(A-3 B) \sec (e+f x) (c-c \sin (e+f x))^{5/2}}{3 a^2 f}-\frac {(A-B) \sec ^3(e+f x) (c-c \sin (e+f x))^{9/2}}{3 a^2 c^2 f}-\frac {(4 (A-3 B)) \int \sec ^2(e+f x) (c-c \sin (e+f x))^{5/2} \, dx}{3 a^2} \\ & = -\frac {8 (A-3 B) c \sec (e+f x) (c-c \sin (e+f x))^{3/2}}{3 a^2 f}-\frac {(A-3 B) \sec (e+f x) (c-c \sin (e+f x))^{5/2}}{3 a^2 f}-\frac {(A-B) \sec ^3(e+f x) (c-c \sin (e+f x))^{9/2}}{3 a^2 c^2 f}-\frac {(16 (A-3 B) c) \int \sec ^2(e+f x) (c-c \sin (e+f x))^{3/2} \, dx}{3 a^2} \\ & = \frac {32 (A-3 B) c^2 \sec (e+f x) \sqrt {c-c \sin (e+f x)}}{3 a^2 f}-\frac {8 (A-3 B) c \sec (e+f x) (c-c \sin (e+f x))^{3/2}}{3 a^2 f}-\frac {(A-3 B) \sec (e+f x) (c-c \sin (e+f x))^{5/2}}{3 a^2 f}-\frac {(A-B) \sec ^3(e+f x) (c-c \sin (e+f x))^{9/2}}{3 a^2 c^2 f} \\ \end{align*}

Mathematica [A] (verified)

Time = 7.31 (sec) , antiderivative size = 130, normalized size of antiderivative = 0.84 \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{5/2}}{(a+a \sin (e+f x))^2} \, dx=-\frac {c^2 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sqrt {c-c \sin (e+f x)} (-50 A+160 B+6 (A-4 B) \cos (2 (e+f x))+(-72 A+201 B) \sin (e+f x)+B \sin (3 (e+f x)))}{6 a^2 f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) (1+\sin (e+f x))^2} \]

[In]

Integrate[((A + B*Sin[e + f*x])*(c - c*Sin[e + f*x])^(5/2))/(a + a*Sin[e + f*x])^2,x]

[Out]

-1/6*(c^2*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*Sqrt[c - c*Sin[e + f*x]]*(-50*A + 160*B + 6*(A - 4*B)*Cos[2*(e
 + f*x)] + (-72*A + 201*B)*Sin[e + f*x] + B*Sin[3*(e + f*x)]))/(a^2*f*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])*(1
 + Sin[e + f*x])^2)

Maple [A] (verified)

Time = 19.68 (sec) , antiderivative size = 105, normalized size of antiderivative = 0.68

method result size
default \(-\frac {2 c^{3} \left (\sin \left (f x +e \right )-1\right ) \left (-B \left (\cos ^{2}\left (f x +e \right )\right ) \sin \left (f x +e \right )+\left (-3 A +12 B \right ) \left (\cos ^{2}\left (f x +e \right )\right )+\left (18 A -50 B \right ) \sin \left (f x +e \right )+14 A -46 B \right )}{3 a^{2} \left (1+\sin \left (f x +e \right )\right ) \cos \left (f x +e \right ) \sqrt {c -c \sin \left (f x +e \right )}\, f}\) \(105\)

[In]

int((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^2,x,method=_RETURNVERBOSE)

[Out]

-2/3*c^3/a^2*(sin(f*x+e)-1)/(1+sin(f*x+e))*(-B*cos(f*x+e)^2*sin(f*x+e)+(-3*A+12*B)*cos(f*x+e)^2+(18*A-50*B)*si
n(f*x+e)+14*A-46*B)/cos(f*x+e)/(c-c*sin(f*x+e))^(1/2)/f

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.71 \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{5/2}}{(a+a \sin (e+f x))^2} \, dx=-\frac {2 \, {\left (3 \, {\left (A - 4 \, B\right )} c^{2} \cos \left (f x + e\right )^{2} - 2 \, {\left (7 \, A - 23 \, B\right )} c^{2} + {\left (B c^{2} \cos \left (f x + e\right )^{2} - 2 \, {\left (9 \, A - 25 \, B\right )} c^{2}\right )} \sin \left (f x + e\right )\right )} \sqrt {-c \sin \left (f x + e\right ) + c}}{3 \, {\left (a^{2} f \cos \left (f x + e\right ) \sin \left (f x + e\right ) + a^{2} f \cos \left (f x + e\right )\right )}} \]

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^2,x, algorithm="fricas")

[Out]

-2/3*(3*(A - 4*B)*c^2*cos(f*x + e)^2 - 2*(7*A - 23*B)*c^2 + (B*c^2*cos(f*x + e)^2 - 2*(9*A - 25*B)*c^2)*sin(f*
x + e))*sqrt(-c*sin(f*x + e) + c)/(a^2*f*cos(f*x + e)*sin(f*x + e) + a^2*f*cos(f*x + e))

Sympy [F(-1)]

Timed out. \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{5/2}}{(a+a \sin (e+f x))^2} \, dx=\text {Timed out} \]

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))**(5/2)/(a+a*sin(f*x+e))**2,x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 577 vs. \(2 (138) = 276\).

Time = 0.33 (sec) , antiderivative size = 577, normalized size of antiderivative = 3.75 \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{5/2}}{(a+a \sin (e+f x))^2} \, dx=-\frac {2 \, {\left (\frac {{\left (11 \, c^{\frac {5}{2}} + \frac {36 \, c^{\frac {5}{2}} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {56 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {108 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {90 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + \frac {108 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}} + \frac {56 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{6}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{6}} + \frac {36 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{7}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{7}} + \frac {11 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{8}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{8}}\right )} A}{{\left (a^{2} + \frac {3 \, a^{2} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {3 \, a^{2} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {a^{2} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}\right )} {\left (\frac {\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1\right )}^{\frac {5}{2}}} - \frac {2 \, {\left (17 \, c^{\frac {5}{2}} + \frac {51 \, c^{\frac {5}{2}} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {92 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {149 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}} + \frac {150 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{4}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{4}} + \frac {149 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{5}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{5}} + \frac {92 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{6}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{6}} + \frac {51 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{7}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{7}} + \frac {17 \, c^{\frac {5}{2}} \sin \left (f x + e\right )^{8}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{8}}\right )} B}{{\left (a^{2} + \frac {3 \, a^{2} \sin \left (f x + e\right )}{\cos \left (f x + e\right ) + 1} + \frac {3 \, a^{2} \sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + \frac {a^{2} \sin \left (f x + e\right )^{3}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{3}}\right )} {\left (\frac {\sin \left (f x + e\right )^{2}}{{\left (\cos \left (f x + e\right ) + 1\right )}^{2}} + 1\right )}^{\frac {5}{2}}}\right )}}{3 \, f} \]

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^2,x, algorithm="maxima")

[Out]

-2/3*((11*c^(5/2) + 36*c^(5/2)*sin(f*x + e)/(cos(f*x + e) + 1) + 56*c^(5/2)*sin(f*x + e)^2/(cos(f*x + e) + 1)^
2 + 108*c^(5/2)*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 90*c^(5/2)*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 + 108*c^(
5/2)*sin(f*x + e)^5/(cos(f*x + e) + 1)^5 + 56*c^(5/2)*sin(f*x + e)^6/(cos(f*x + e) + 1)^6 + 36*c^(5/2)*sin(f*x
 + e)^7/(cos(f*x + e) + 1)^7 + 11*c^(5/2)*sin(f*x + e)^8/(cos(f*x + e) + 1)^8)*A/((a^2 + 3*a^2*sin(f*x + e)/(c
os(f*x + e) + 1) + 3*a^2*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + a^2*sin(f*x + e)^3/(cos(f*x + e) + 1)^3)*(sin(f
*x + e)^2/(cos(f*x + e) + 1)^2 + 1)^(5/2)) - 2*(17*c^(5/2) + 51*c^(5/2)*sin(f*x + e)/(cos(f*x + e) + 1) + 92*c
^(5/2)*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 149*c^(5/2)*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 150*c^(5/2)*sin
(f*x + e)^4/(cos(f*x + e) + 1)^4 + 149*c^(5/2)*sin(f*x + e)^5/(cos(f*x + e) + 1)^5 + 92*c^(5/2)*sin(f*x + e)^6
/(cos(f*x + e) + 1)^6 + 51*c^(5/2)*sin(f*x + e)^7/(cos(f*x + e) + 1)^7 + 17*c^(5/2)*sin(f*x + e)^8/(cos(f*x +
e) + 1)^8)*B/((a^2 + 3*a^2*sin(f*x + e)/(cos(f*x + e) + 1) + 3*a^2*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + a^2*s
in(f*x + e)^3/(cos(f*x + e) + 1)^3)*(sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 1)^(5/2)))/f

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 293 vs. \(2 (138) = 276\).

Time = 0.61 (sec) , antiderivative size = 293, normalized size of antiderivative = 1.90 \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{5/2}}{(a+a \sin (e+f x))^2} \, dx=\frac {32 \, \sqrt {2} {\left (A c^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - 3 \, B c^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) - \frac {3 \, A c^{2} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}} + \frac {9 \, B c^{2} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}} + \frac {2 \, A c^{2} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{3} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{3}} + \frac {2 \, B c^{2} {\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{3} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{3}}\right )} \sqrt {c}}{3 \, a^{2} f {\left (\frac {{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - 1\right )}^{2}}{{\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{2}} - 1\right )}^{3}} \]

[In]

integrate((A+B*sin(f*x+e))*(c-c*sin(f*x+e))^(5/2)/(a+a*sin(f*x+e))^2,x, algorithm="giac")

[Out]

32/3*sqrt(2)*(A*c^2*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)) - 3*B*c^2*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)) - 3*A*c^
2*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))/(cos(-1/4*pi + 1/2*f*x + 1/2*e) +
 1)^2 + 9*B*c^2*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))/(cos(-1/4*pi + 1/2*
f*x + 1/2*e) + 1)^2 + 2*A*c^2*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^3*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e))/(cos(
-1/4*pi + 1/2*f*x + 1/2*e) + 1)^3 + 2*B*c^2*(cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^3*sgn(sin(-1/4*pi + 1/2*f*x +
 1/2*e))/(cos(-1/4*pi + 1/2*f*x + 1/2*e) + 1)^3)*sqrt(c)/(a^2*f*((cos(-1/4*pi + 1/2*f*x + 1/2*e) - 1)^2/(cos(-
1/4*pi + 1/2*f*x + 1/2*e) + 1)^2 - 1)^3)

Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B \sin (e+f x)) (c-c \sin (e+f x))^{5/2}}{(a+a \sin (e+f x))^2} \, dx=\int \frac {\left (A+B\,\sin \left (e+f\,x\right )\right )\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{5/2}}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^2} \,d x \]

[In]

int(((A + B*sin(e + f*x))*(c - c*sin(e + f*x))^(5/2))/(a + a*sin(e + f*x))^2,x)

[Out]

int(((A + B*sin(e + f*x))*(c - c*sin(e + f*x))^(5/2))/(a + a*sin(e + f*x))^2, x)